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What Can We Learn from Homoclinic Orbits in 
Chaotic Dynamics? 
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State diagrams of two model systems involving three variables are constructed. 
The parameter dependence of different forms of complex nonperiodic behavior, 
and particularly of homoclinic orbits, is analyzed. It is shown that the onset of 
homoclinicity is reflected by deep changes in the qualitative behavior of the 
system. 
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1. INTRODUCTION 

One of the major complications encountered in current studies of transi- 
tions leading to chaotic dynamics is the global character of many of these 
phenomena. This leads to highly nonlinear evolution equations which, as a 
rule, remain intractable. 

One can envisage two ways out of this difficulty. First, reduce some 
aspects of global dynamics to a local problem. And, second, even in the 
framework of a global description, find some features which characterize 
complex nonperiodic behavior as closely as possible. The basic idea behind 
the first attitude is the realization that many transitions which are global 
when one control parameter is varied become local when more than one 
such parameters are considered. (1~ Thus, by studying certain codimension 
two bifurcations, it has been possible to show that complex nonperiodic 
behavior emerges both for autonomous (2) and for forced (3) systems. 
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The second point of view, namely, the characterization of complex 
behavior in the large, is a much more ambitious project. A beautiful 
example showing that in some cases such projects can nevertheless be 
fulfilled is Feigenbaum's discovery of universality of certain classes of 
mappings of the interval. (4'5~ It is the purpose of the present paper to stress 
that an important role in organizing our information on complex behavior 
is the occurrence of homoclinic orbits, that is to say, infinite period orbits 
which are doubly asymptotic to a singular point of the saddle type as 
t ~ _+ oe. A similar point of view has been adopted in an interesting recent 
paper by Arneodo e t a / . ,  (6) which came to our knowledge after the present 
work was completed. Moreover, Afraimovitch e t a / .  (7) have shown that 
homoclinic orbits shed some light on the origin and structure of the Lorenz 
attractor. 

Homoclinic points,  the intersections of stable and unstable manifolds 
of fixed points of discrete time mappings, are a familiar concept in global 
dynamics. Ever since their discovery by Poincar6 and Birkhoff and their 
comprehensive study by Smale, (8) they have been regarded as "landmarks" 
signaling the onset of complex nonperiodic behavior. On the other hand, 
the role of homoclinic orbits in continuous time flows is much less explored 
since, for one thing, such orbits are structurally unstable. (9) It is only in the 
1960s that some of their important and unsuspected features were discov- 
ered by Sil'nikov et al. ~1~ Of particular interest for our investigation is 
the following result. 

Consider the three-variable system 

2 = px  - ~oy + P ( x , y , z )  

.~ = o~x + OY + Q(x ,  y , z )  (1) 

= Xz + R (x ,  y ,  z) 

where P, Q, R are analytic functions vanishing together with their first 
derivatives at the origin (0, 0, 0), which is a saddle-focus. We assume that 
one of the orbits, F 0, leaving the saddle-focus returns to it as t ~ oe. Then 

(i) If X > -O > 0 (or if - ) t  > O > 0) every neighborhood of F 0 con- 
tains a countable set of unstable periodic solutions of the saddle type. 

(ii) There exists in a neighborhood of I" 0 a subsystem of trajectories 
which display random behavior, in the sense that they are in one-to-one 
correspondence with a shift automorphism with an infinite number of 
symbols. 

In view of these results, it is natural to conjecture that there should be 
a relation between homoclinic trajectories and complex nonperiodic behav- 
ior of the chaotic type. The search of homoclinic trajectories in model 
systems, their parameter dependence, and the characterization of chaotic 
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motions generated for nearby values of parameters, is the principal goal of 
the present work. 

In Section 2, we consider a three-variable model proposed by R6ssler 
as one of the prototypes of chaotic behavior. (~2) We determine the singular 
points and their stability properties, and show that around either of these 
points the evolution can be cast in the Sil'nikov form [Eq. (1)] for certain 
ranges of parameter values. Section 3 is devoted to the nonlinear behavior: 
limit cycles, Feigenbaum sequences, chaos, and homoclinic orbits. Specifi- 
cally, we show that the system admits such orbits and we construct state 
diagrams determining their location in a two-parameter space. We also 
comment on the type of effects that can occur on crossing the parameter 
values for which a homoclinic orbit exists, and particularly on the mixing 
properties of the trajectories on the attractor in the vicinity of such orbits. 
In Section 4 we repeat the calculations for a new three-variable model 
whose main interest is to be compatible with mass action kinetics. (13) Here 
we find again homoclinic trajectories, in the vicinity of which chaotic 
solutions obey some interesting rules. In the final Section 5, we discuss the 
implications of the results. 

2. R(~SSLER'S MODEL--SINGULAR POINTS AND LINEAR 
STABILITY ANALYSIS 

We consider the three-variable system (12) 

2 = - y  - z  

)~ = x + a y  ( 2 )  

2 = b x -  cx  + x z  

and limit ourselves to the cases in which the parameters a, b, and c are 
positive. 

The system possesses two singular points: 

Xl = Y l  ~ ZI ~ 0 

and 

(3a) 

x 2 = c -  ab, v2 = b - c ,  z2 = c _ b  (3b) 
a a 

Linear stability analysis shows that both states can be, under certain 
conditions, saddle-foci as required by Sil'nikov's theorem. Specifically, we 
obtain the following types of behavior. 

(i) For po in t  (Xl, y l , z l ) :  The characteristic equation takes the form 

?t 3 + ( c - a ) ~  2 + ( 1  + b - a c ) 2 t + c - a b = O  (4) 



502 Gaspard and Nicolis 

The locus of points in parameter space for which the roots are of the form 
(i~0, - iw, X) is 

(1 + c2)+  [(1 + c2)2-4bc2] '/: 
a+_ = 2c (5) 

On the other hand, the locus of points for which the roots are (X~,X2, 0) is 
c 

a -  b (6) 

(ii) For point (x2, Y2, z2): The characteristic equation takes the form 

X3+a(b-1)X2+(l+ C-a2b))t+ab-c=O (7) 
a 

The locus of points for which the roots are (ir - ir X) is 
a c = ~ + ( b -  1)a 3 (8) 

and the locus for which the roots are (X1, X 2, 0) is 
c a -  
b 

(9) 

o I b=0.3 

2"S I I~/{sil'nlkOvl 3 real roots 

l~V 

Fig. 1. State diagram in the space of parameters (a, c) for Rrssler's model, obtained from the 
analysis of the characteristic equation around singular point (x 1 , Yl, Zl). The nature of the 
characteristic roots is illustrated schematically in each part of the diagram, and the regions in 
which the singular point is a saddle-focus satisfying condition (i) of Sil'nikov's theorem are 
indicated explicitly. The framed part is magnified in Fig. 3, where the nonlinear behavior is 
analyzed. 
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Fig. 2. Same as Fig. 1, except that the characteristic equation analyzed is around the singular 
point (x 2, Y2, z2). 

Figures 1 and 2 summarize the information obtained from linear 
stability, in the form of "state diagrams" in the space of a and c, keeping b 
fixed to the value b = 0.3. 

An interesting limiting case arises when the two singular points merge. 
From Eqs. (3a)-(3b) it is clear that this happens when c -- ab. 

Moreover, Eqs. (6) or (9) show that in this case one of the roots of the 
characteristic equation is zero. The remaining two roots are given by the 
relation 

a(1-b )+_[a2(b+ 1 ) 2 - 4 ( b  + 1)] 1/2 
x = 2 (10) 

It follows that when 

a2(b + 1) < 4 (11) 

the eigenvalues will be complex conjugate, and that the sign of their real 
part will be negative or positive according as b > 1 or b < 1. When b -- 1, 
inequality (11) is satisfied for 0 < a <~ - .  On this segment of the parameter 
space spanned by a,b one will have therefore a degenerate situation 
corresponding to eigenvalues (iw, - iw ,  0). By slightly varying the parame- 
ters from this special situation, one can hope to approach the behavior of 
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Eqs. (2) b y  pe r tu rba t ion  theory.  W e  come back  to this p r o b l e m  in the 
discussion.  

3. NONLINEAR BEHAVIOR- -HOMOCLINIC  ORBITS 

W e  have  carr ied  out  an  extensive s tudy of the non l inea r  behav ior  of 
Eqs. (2) in p a r a m e t e r  space,  keeping  b = 0.3 and  vary ing  a and  c in the 
in terval  0 <~ a ~< 0.55, 4 < c < 5.8. Dif ferent  aspects  of the p a r a m e t e r  de- 
pendence  of the mode l  have  been  repor ted  recent ly  in an  interest ing p a p e r  
by  F rase r  and  Kapra l .  (14) The  in tegra t ion  me thod  fol lowed was an  im- 

b:O.3 

(h) P2 

0.4 - \ t~ 'd  ) . . . . . . . .  

N . . . . . . . . . . . .  ___~r L 

0.3 ~ . . _ ~ _ _ _ _ ~  

(bS) .._ 

0.2 

0.1 

(a) 

I 

~.0 4.5 5.0 5.5 c 

Fig. 3. Nonlinear behavior and transitions in Rgssler's model in the space of parameters 
(a, c), Curve (a): line of Hopf bifurcations around singular point (x 1 , Yt, z2); curves (b2)-(b8): 
lines of period doubling bifurcations; curve (c): line delimiting onset of chaotic behavior; 
curves (d), (f): lines along which two homoclinie orbits FI, r] associated to (xl, Yl, zl) exist; 
curve (e): transition line between "spiral"- and "screw"-type chaos conditioned by homoclinic 
orbit FI, and reflected by a jump in the return time plot (Fig. 6); curve (g): line indicating 
similar transition conditioned by homoclinic orbit F]; curve (11): line along which a homo- 
clinic orbit F 2 associated with (x2, Y2, z2) exists. 
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proved Euler method with an O(h 3) error on the step h. We here summa- 
rize the main results. 

(i) Hopf bifurcation: In the above-defined range of values of a and c 
relation (8) is never satisfied, but relation (5) can be satisfied for a .  It 
follows that, for a given value of c, a Hopf bifurcation will take place from 
the singular point (x 1, Yl, xl) as a increases beyond the value a_.  Curve (a) 
of Fig. 3 describes the transition locus. Note the existence of a large region 
within a >/a_ in which the third real eigenvalue exceeds in absolute value 
the real part of the complex conjugate eigenvalues. In particular, from Eq. 
(4) it is seen that this is always so near a_,  as long as c > a. In other words, 
one of the requirements for the validity of Sil'nikov's theorem can be 
readily satisfied. 

The limit cycle resulting from the Hopf bifurcation can be constructed 
analytically and shown to be attractive in the domain of parameter values 
considered in Fig. 3. Details of the computations are given in Ref. 13. 

(ii) Period doubling sequence: For values of a well above a_, period 
doubling bifurcations are detected which are in qualitative agreement with 
Feigenbaum's scenario. (4'5) Curves (b2)-(b8) of Fig. 3 describe the transi- 
tion loci in parameter space. They have been determined numerically by 
studying the Poincar6 map of the flow on the plane x = 0. 

(iii) Chaotic behavior: For still larger values of a [beyond curve (c) of 
Fig. 3], chaotic behavior is observed in a large domain of the parameter 
values. Two characteristic attractors, corresponding to (a = 0.32, c = 4.5) 
and (a = 0.38, c = 4.5) are shown in Figs. 4a and 4b, respectively. Their 
structure is markedly different and suggests that, somewhere along the 
interval 0.32 < a < 0.38, a transition between "spiral"-type and "screw"- 
type chaos should take place. (6'~a) As it turns out this transition reflects the 
existence of homoclinic orbits in the system. We turn to this point presently. 

(iv) Homoclinic orbits: As pointed out in Section 2, in certain regions 
of the parameter space both singular points of the system can satisfy the 
conditions required by Sil'nikov's theorem. It is therefore natural to seek 
homoclinic trajectories in this range. 

Consider first the singular point (x~, Yl, zl)- For the range of parame- 
ter values given in Fig. 3, this point behaves as a saddle-focus with a 
one-dimensional stable manifold and a two-dimensional unstable manifold. 
To determine a homoclinic trajectory we studied the intersections of the 
unstable manifold with a plane transversal to the local stable manifold, 
which are generated by several trajectories starting from the (local) unstable 
manifold near the singular point. By varying one of the parameters at a 
time, we could determine, by interpolation, the value at which the unstable 
manifold contains the stable one. Curve (d) of Fig. 3 gives the parameter 
values for which this homoclinic trajectory F 1 exists. Its phase space 
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Fig. 4. (a) Nonperiodic attractor of the spiral type in R6ssler's model, obtained for the 
parameter values indicated and for initial condition x = y = z = 1. T o, T 1 : beginning and end 
of integration interval, during which the attractor is traced; x :  singular point (x2, Y2, z~); 
I I: unit interval along the axes. 

por t r a i t  for a = 0.38, b = 0.3, c = 4.82 is g iven  in  Fig.  5. The  a t t r ac to r  
c o n t a i n i n g  this t ra jec tory  has  a phase  por t r a i t  qu i te  s imi lar  to tha t  of Fig.  
4b.  C u r v e  (d) ends  at  a p o i n t  M 1. This  fact  is caused  b y  the  fo ld ing  of the  
u n s t a b l e  man i fo ld ,  wh ich  c a n  be  seen f rom Figs.  4a  or 4b.  I t  m a y  thus  be  
expected  tha t  curve  (d) will also b e  fo lded  n e a r  p o i n t  M 1, a n d  tha t  on  
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i 

Fig. 4 (continued). (b) Nonperiodic attractor of the screw type in Rossler's model obtained 
for the parameter values indicated and for otherwise similar conditions as in Fig. 4a. 

crossing this curve transversally along a path  slightly above M1, one will 
encounter  in a very narrow interval of values of parameter  c two flows 
containing a homocl inic  orbit. 

Curve (e) of Fig. 3, the frontier between spiral-type chaos and screw- 
type chaos also emanates  f rom point  M 1 . I t  can  be determined by using the 
following criterion. The successive iterates x~ of the flow on the plane 
( y  = 0, x < 0, z < 1), as well as the times t, needed by the trajectory 



508 

A= 

f5= 

C= 

.380 

,300 

4 .820 

Gaspard and Nicolis 

1 

t 
. J  

J 
z 

Fig. 5. Homoclinic orbit r I for Rossler's model around singular point (xl, Yl, Zl)- Parameter 
values are indicated on the figure. Eigenvalues around that point are given by (0 + ir X), 
where p~0.1597, r X~---4.7594. Initial condition lies on the local unstable 
manifold at a distance of about 0.47 from (x l, Yl, zl), and on planey = 0. 

starting at x .  to cross again this plane, are computed.  The graphs of the 
functions ( -  x .  -~  - x .  + 0,  ( ~  x .  ~ t.) are plotted in Figs. 6a and 6b, for 
the attractors depicted in Figs. 4a and 4b, respectively,  The difference is 
striking, especially in the return t ime plots: here the jump observed in the 
screw-type chaos implies that the spreading of nearby initial condit ions  on 
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Fig. 6. (a) Left: successive iterates of the flow generated by the attractor of Fig. 4a on the 
plane (y = 0, x < 0, z < I). Right: return time plot obtained under the same conditions. 
Parameter values and integration time interval are indicated on the figure. (b) Similar plots for 
the flow generated by the attractor of Fig. 4b. 

the attractor by the f low is more  efficient than for spiral-type chaos.  (15) 
This can be used therefore as a criterion for locating curve (e), which 
delimits these two different types of mot ion .  N o t e  that the t ime dependence  
of the variables undergoes also a qualitative change when  curve (e) is 
crossed. Specifically, in the spiral-type chaos the t imes at which one  has 
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Fig. 7. Homoclinic orbit F 2 for R6ssler's model around singular point (x2, Y2, z2). Parameter 
values are indicated on the figure. Eigenvalues around that point are given by (# ___ i~, X), 
where p~---0.0428, w--~3.1994, k, --~ 0.4253. Initial condition lies on the local unstable 
manifold at a distance of about 0.14 from the singular point. 

ex t rerna  of the osc i l la t ions  are  d i s t r ibu ted  fa i r ly  regular ly ,  whereas  in  the  
screw type  they fo rm a r a n d o m  sequence .  

T h e  a bove  r emarks  subs t an t i a t e  the  role of h o m o c l i n i c  orbi ts  in  the  
onse t  of  chao t ic  m o t i o n  d i sp l ay ing  s t rong  m i x i n g  proper t ies  o n  the a t t rac-  
tor. 
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Curve (f) of Fig. 3 is the locus in parameter space for which another 
homoclinic orbit, F'1, associated with the same singular point (xl,  y~,zl) 
exists. Its existence reflects another transition which takes place along curve 
(g) between chaotic attractors for which the return time plot presents one 
jump and those for which it contains two successive jumps (and thus 
implies that a longer time is required). The same remarks as above about 
the end point M[ and the folding of the curve (f) also hold here. 

It should be pointed out that not all the attractors in the part of Fig. 3 
above curve (c) are necessarily chaotic, even if a homoclinic orbit exists in 
the flow. For instance, for the parameter values (a = 0.4, c = 4.7737) on 
curve (d) we found an attracting periodic motion, located in phase space 
away from the vicinity of the homoclinic orbit. 

We turn now to the singular point (x2, Y2, z2). In the parameter range 
studied in Fig. 3, this point is a saddle-focus with a two-dimensional stable 
manifold and a one-dimensional unstable manifold. A homoclinic trajec- 
tory F 2 associated with it can be determined by the same method as above. 
Its locus in parameter space is given by curve (h) of Fig. 3, whereas a 
phase-space plot is given in Fig. 7. A characteristic feature of F 2 is the 
nonexistence of an attractor in this range of parameter space. A trajectory 
starting near F 2 would, typically, approach the vicinity of the singular 
point, spiral around it, and eventually diverge. The absence of (attracting) 
chaos under conditions for which F 2 exists has also been pointed out by 
Arneodo et al. in Ref. 6. 

From the existence of 1" 2 it can be proven analytically (13) that if curve 
(h) is approached transversally from below, a sequence of flows possessing 
another class of homoclinic orbits associated with (x2, Y2, z2) and accumu- 
lating exponentially to (h) is encountered. In view of the complexity of 
these phenomena, the exact frontier of attractivity could not be determined 
easily. In any case, from the above results we are entitled to conclude that 
homoclinic trajectories play here a clear-cut role, as they are associated 
with bifurcations leading to the loss of asymptotic stability of the R6ssler 
attractor. 

4. A MODEL DERIVING FROM MASS ACTION KINETICS 

R6ssler's model, Eq. (2), admits positive as well as negative solutions. 
As it stands, therefore, it cannot be regarded as a model of chaotic behavior 
in chemical or population dynamical evolution equations. For this reason 
we present, in this section, a model which obeys mass-action kinetics and is 
also capable of generating complex nonperiodic behavior. 
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We consider the reaction scheme 

t A~ + X ~ 2 X  
A 2 + 2X--->3X 

X +  Y ~ P ~ +  Y 

X +  Z - - ~ P 2 +  Z 

fA3 + X +  Y ~ X + 2 Y  

A 4 + Z + Y---)Y~ P3Z + 2 Y  (12) 

t A s + X - - > X + Z  
A 6 + 2 Z ~ 3 Z  

3 Z  --> P4 

Z---~ P5 

On suitably scaling the variables and the parameters one can easily 
verify that the rate equations can be cast in the form 

= x ( d x  - f y  - z + g )  

j~ = y ( x  + sz - l )  (13) 

i =  l ( x _  ag 3+ bz 2 -  cz) 
E 

where all parameters are positive, all but c are of O(1), and c << 1. Note the 
existence of a fast time scale in the model, related to the smallness of e. 

All steady states of the system tie on the "slow manifold" 

X = az 3 -- bz 2 + cz (14) 

It can be easily checked that for 

1 < ac 1 (15) 

this curve is S-shaped and crosses the z axis only at z = 0. 
Two possible sets of steady states are solutions of the following 

algebraic equations: 

-- l -  s z i ,  Yl = l (dx l  - z l  + g) X 1 

J 
(16a) 

a ~  - b~, ~ + (~ + ~ ) ~  - t =  o 

and 
Y2 = O, z 2 = dx 2 + g 

(16b) 
x 2  = a z  3 - b z ~  + c z2  
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Moreover, the origin 

x3 = Y3 = z3 = 0 (16C) 

is always a steady state. 
In order to study that exact location of the above steady states and 

their stability, it will be convenient to fix the values of all but a few of the 
parameters. We carried out two series of investigations, corresponding to 

a = 0.5, b = 3, c = 5, E = 0.01 
f =  0.5, g = 0.6, s = O, l = 1.5 (17a) 

0.3 ~< d < 0.6 

and 

a = 0.5, b = 3, c = 5, c = 0.01 
f -  0.5, g = 0.6, s = 0.3 (17b) 

0 . 3 < d < 0 . 5 5 ,  1 . 2 < l <  1.5 

For all these values, the origin (x3, y3,z3) is unstable and Eqs. (16b) 
admit two positive solutions which turn out to be unstable. On the other 
hand, Eqs. (16a) may admit up to three solutions, but only one of them is 
positive and thus physically acceptable. For a wide range of parameter 
values this state behaves as a saddle-focus, with a one-dimensional stable 
manifold, satisfying the conditions required by Sil'nikov's theorem. The 
locus in parameter space for which the characteristic roots are (ion, - iw, )~) 
is given by 

1 + O(e) (18) 
d - -  d C= 3 a z ~ -  2bz  1 + c  

We turn now to the nonlinear behavior of the system. 
(i) The p a r a m e t e r  values vary according to Eq.  (17a): Figure 8 de- 

scribes the qualitative behavior. The first transition is a Hopf bifurcation 
which takes place when d is increased beyond the threshold given by Eq. 
(18). The resulting limit cycle becomes in turn unstable for d~0 .47 .  A 
complex sequence of transitions takes then place. Let M p denote a periodic 
attractor whereby the system performs p turns around the singular point 
and visits M times the upper part of the manifold, Eq. (14). Furthermore let 
(M p, N q, . . . ) denote a nonperiodic attractor whereby the system performs, 
in an apparently random manner, a succession of motions of the type M f, 
N q, etc. One can then show that, for parameter values beyond the instabil- 
ity of the limit cycle, the system goes successively through periodic and 
nonperiodic attracting regimes of the type defined above. 

A comment on the numerical integration is here in order. Owing to the 
presence of the smallness factor c, the system of Eqs. (13) is stiff. A simple 
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a:O.5 b=3. c:5. e=O.01 f=O5 g=O,6 s=O. 1=15 
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(?I~I3L (!~I 2) 
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i , , - > d  

0.35 0.Z0 0.t+5 0.50 055 060  

Fig. 8. Transitions taking place for model (12) as the parameter d varies in the interval 
0.3 < d < 0.6 and the other parameters are fixed according to Eq. (17a). St, stable steady 
state; P, stable periodic state bifurcating from St. Subsequently a succession of nonperiodic 
motions of the type ( M  p, N q . . . .  ) interrupted by windows of periodic motions of the type M? 

is observed. 

J a=0.5 
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0.S 

0k b)_L 

o.~ c3.L 

0 . 2 - -  

b=3. c=5.  e=O.01 f=0.5 g=0.6 s: ,,3 
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Fig. 9. Transitions taking place for model (12) in the space of the two parameters d and I [see 
Eq. (17b)]. Curve (a): line of Hopf bifurcations; curve (b): line of loss of stability of the limit 
cycle; curve (c): line along which a homoclinic orbit F o, associated with (xl, Yl, zl) exists. 
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second-order integration method as described in the preceding section 
yields therefore instabilities. One way to avoid this (~3) is to normalize the 
velocity field, V and study the phase portrait of the vector field evolving 
according to 

X _  V IIVI } (19) 

where [[VI[ = (~iVi2) 1/2 and each V i is given by the right-hand sides of Eqs. 

D= ,510 

L= ~ .300  

TO= 358 .123 

T I =  750 . 8 " -  

Y 1 0 

Fig. 10. Nonperiodic attractor emerging beyond line (b) of Fig. 9 for d = 0.510, l = 1.300, 
and other parameter values given by Eq. (17b). Initial condition: x = y  = z = 1; •  singular 
point (x t ,  Yl, Zl). 
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(13). This preserves the phase portrait of the original system and amounts 
to introducing a "local" time scale in the system, which varies along the 
trajectories. 

(ii) The parameter values vary according to Eq. (17b): Figure 9 de- 
scribes the situation. In the parameter space spanned by d and l, a line of 
Hopf bifurcation is first encountered as d is increased [curve (a)]. Subse- 
quently the limit cycle loses its stability [curve (b)], and a variety of 

D= .510 

L= I .33g 

i 
I y 0 

Fig. 11. Homoclinic orbit F 0 for model (12) around singular point (xl ,  Yl, Z1), for d = 0.510, 
l ~  1.339 and other parameter values given by Eq. (17b). Eigenvalues around (x 1, Yl ,  zl) are 
given by (p -+ iw, )0, where p ~ 0.1311, w ~ 1.1215, ~ ~ -332.2860.  Initial condition lies on a 
plane tangent to the unstable manifold at a distance of about 0.039 from the singular point, 
and on a plane parallel to Oxz passing from this latter point. 
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nonperiodic attractors of the type (M p, N q , . . .  ) defined above emerges, of 
which an example is shown in Fig. 10. The chaotic attractors observed are 
of the screw type, but one can expect that just above curve (b) spiral type 
of chaos should exist. In addition, a locus of homoclinic orbits associated to 
(xl, Yl, zl) is observed [curve (c)], whose downward tip M does not belong 
to curve (b). The same remark as in R6ssler's model about the folding of (c) 
near point M arising from the folding of the unstable manifold also holds 
here. The corresponding homoclinic trajectory leaves the vicinity of the 
singular point within the two-dimensional unstable manifold of this point, 
visits once the upper part of the slow manifold, Eq. (14), and comes back to 
the singular point in the way shown in Fig. 11. As in R6ssler's model, in 
spite of the existence of homoclinic orbits, the flow can contain periodic 
attractors embedded amidst the chaotic ones in parameter space. 

An interesting phenomenon arises as one moves roughly along an axis 
parallel to l toward the locus of the homoclinic trajectory. One observes 
nonperiodic attractors (1 p, . . . .  , 1 p") in which the maximum number of 
turns p, of the trajectories around the singular point increases. Presumably, 
this reflects the fact that for the homoclinic trajectory itself the number of 
turns around the singular point tends to infinity. 

5. D ISCUSSION 

We have analyzed the parameter dependence of homoclinic trajecto- 
ries of two model systems involving three variables. We have shown that 
the onset of homoclinicity is reflected by several kinds of qualitative 
changes of nearby nonperiodic motions: transition from "spiral"- to 
"screw"-type chaos, onset of chaotic behavior with stronger mixing proper- 
ties, transition to attractivity, or an increasing number of oscillations 
between intermittent bursts. 

One question remains unanswered, namely, whether there exists any 
universality in some of the above-mentioned behaviors. The most promis- 
ing approach to this question would be to analyze a class of equations in 
the vicinity of a degenerate situation like, for instance, the merging of the 
two singular points mentioned in Section 2. This should allow one to "see" 
analytically the birth of homoclinicity, and to connect this phenomenon 
with the onset of chaotic behavior. We intend to report on this point in a 
subsequent publication. 
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